Sufficient conditions for global optimality of semidefinite optimization
نویسندگان
چکیده
* Correspondence: [email protected] Department of Mathematics, Yibin University, Yibin, Sichuan 644007, China Full list of author information is available at the end of the article Abstract In this article, by using the Lagrangian function, we investigate the sufficient global optimality conditions for a class of semi-definite optimization problems, where the objective function are general nonlinear, the variables are mixed integers subject to linear matrix inequalities (LMIs) constraints as well as bounded constraints. In addition, the sufficient global optimality conditions for general nonlinear programming problems are derived, where the variables satisfy LMIs constraints and box constraints or bivalent constraints. Furthermore, we give the sufficient global optimality conditions for standard semi-definite programming problem, where the objective function is linear, the variables satisfy linear inequalities constraints and box constraints. Mathematics Subject Classification 2010: 90C30; 90C26; 90C11.
منابع مشابه
Sufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملNecessary and sufficient global optimality conditions for NLP reformulations of linear SDP problems
In this paper we consider the standard linear SDP problem, and its low rank nonlinear programming reformulation, based on a Gramian representation of a positive semidefinite matrix. For this nonconvex quadratic problem with quadratic equality constraints, we give necessary and sufficient conditions of global optimality expressed in terms of the Lagrangian function.
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملComplete Dual Characterizations of Optimality and Feasibility for Convex Semidefinite Programming
A convex semidefinite programming problem is a convex constrained optimization problem, where the constraints are linear matrix inequalities, for which the standard Lagrangian condition is sufficient for optimality. However, this condition requires constraint qualifications to completely characterize optimality. We present a necessary and sufficient condition for optimality without a constraint...
متن کاملGlobal Optimality Principles for Polynomial Optimization Problems over Box or Bivalent Constraints by Separable Polynomial Approximations∗
In this paper we present necessary conditions for global optimality for polynomial problems over box or bivalent constraints using separable polynomial relaxations. We achieve this by completely characterizing global optimality of separable polynomial problems with box as well as bivalent constraints. Then, by employing separable polynomial under-estimators, we establish sufficient conditions f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012